Cold streams: detectability, relation to structure and characteristics

Tobias Goerdt

University of Vienna

Collaborators: Daniel Ceverino, Andi Burkert, Avishai Dekel, Amiel Sternberg

Cold streams

Detectability in absorption: Computed sky covering fraction

- Very low sky covering fraction
- Low metallicity in streams

Stacked absorption line profiles

Central geometry / 'down the barrel'

In agreement with Steidel et al. (2010) or

Bouché et al. (2013)

Emission: Lyman alpha blobs

Cold streams
loose potential
energy
released as Ly
alpha photons.

Computed vs.
 Observed
 Surface
 brightness
 maps

Ly a blob luminosity function

Mass luminosity scaling relation correlated with Sheth Tormen mass function

Observational data from Matsuda et al. (2004, 2009)

Relation to structure:

- Ibata et al: Andromeda: thin disk of satellites
- Cold streams carry clumps
- Consequence: Coplanar satellite structure!

Relation to structure

- Double check with simulations:
- High z: cold stream activity with clumps
- Low z: Coplanar structure of satellites

Inflow velocity

- In units of virial velocity
- Constant with radius
- Power law with redshift and host halo mass

Inflow distribution

- Double Gaussian
- Represents mergers and smooth infall
- Observationally found by Sargent et al. (2012): star formation: main sequence | starburst activity

- Detectability in absorption:
 - Difficult (low sky covering fraction / metallicity)
- Cold stream emission: Lyα blobs
 - Simulation maps very similar to observations in extent, shape, luminosity
 - Luminosity function fits data
- Relation to structure:
 - Thin satellite disks: natural consequence of streams
- Characteristics:
 - Velocity vs. radius: constant
 - Velocity vs. mass or redshift: power law
 - Inflow distribution: double Gaussian (like Sargent et al's star formation observations)