Cold Gas in Early-type Galaxies

Lisa Young (New Mexico Tech, USA; and ASIAA) + Atlas3D team (www.purl.org/atlas3d)

Image credit: P.-A. Duc 2011 (c) CEA/CFHT

Context and Project Goals

E and S0 galaxies move onto the red sequence by losing most of their cold gas, through

- consumption (star formation)
- feedback, AGN or stellar
- environmental effects, stripping

• ??

Our Goal: read the signatures of these processes in stellar kinematics, stellar populations, and gas of early-type galaxies.

Atlas3D: complete volume-limited sample of ETGs

- **Optical spectroscopy** (SAURON on WHT)
 - Stellar kinematics, ionized gas distribution & kinematics, stellar populations
- **Deep optical imaging** (CFHT Large Programme)
- *HI maps* of 170 northern galaxies with WSRT
- Single-dish CO + some ¹³CO, HCN, HCO+, CS (IRAM 30m)
- **CO maps** of 40 detections with CARMA, PdB, 5" resolution
- cosmological SAM simulations
- high-resolution merger simulations

Cold Gas

raw material for star formation
tracer of galaxy interactions
dust shows up in optical images, but without kinematic information.

HST image gallery; credit: NASA, ESA, R.M. Crockett et al.

Basic cold gas (CO and HI) data

- CO (IRAM 30m) detection rate 22% +- 3%
 - $\rm H_2$ masses $10^{7.1}$ to $10^{9.3} \rm \ M_{\odot}$ or
 - Log M(H₂)/M_{\star} = -3.5 to -1.1 (Young+ 2011)
- 40 CO detections mapped at 5" res. ~ 600 pc
 - Disks, rings, bars, irregular morphologies (Alatalo+ 2013)
- HI maps (WSRT) at ~ 35" resolution (Serra+ 2012), 40% detected
 - HI sensitivity ~ few 10^{19} cm⁻² or 10^6 to 10^8 M_{\odot}
 - Disks (up to many 10s kpc), irregular morphologies, clouds
- Largest set of cold gas maps ever assembled for early-type galaxies

Cold gas in red sequence E and S0

• gas mass and detection rate do **not** depend on stellar mass

• CO content is higher in more disky galaxies (vs spherical/bulge dominated)

• reddening by dust doesn't affect colors much NUV-K

• the approach to the red sequence does **not** have to involve the loss of all cold gas. (or was it re-acquired?)

Cold gas in red sequence E and S0

• gas mass and detection rate do **not** depend on stellar mass

• CO content is higher in more disky galaxies (vs spherical/bulge dominated)

• reddening by dust doesn't affect colors much NUV-K

• the approach to the red sequence does **not** have to involve the loss of all cold gas. (or was it re-acquired?)

Young et al (1312.6318)

Cold gas vs. stellar kinematics (assembly history)

merger sims by Bois et al 2010, 2011; Naab et al, 1311.0284

detected in CO (24 \pm 3%) and HI (31 \pm 5%)

Slow rotators (11% of ETGs) and spherical Non-rotators (3% of ETGs)

detected in HI (41 \pm 14%) but rarely in CO (6 \pm 4%)

Kinematics; the origin of the cold gas

- stellar--gas kinematic misalignments are common, occurring in > 35% of fast rotators (oblate galaxies; Davis 2011; Sarzi 2006)
- > 50% of the H_2 and HI is **not** recycled from internal stellar mass loss
 - H_2 misalignments are less common in high mass galaxies and cluster members

Kinematics; the origin of the cold gas

• Question for simulators: can you reproduce this distribution of kinematic misalignments with accretion of gas? satellites? major mergers? ...?

Gas Kinematics in Simulations

Lagos et al (1405.0016): reproduce HI and H2 contents w/gentle stripping of hot gas

Serra et al (1401.3180): difficult to reproduce large quantities of misaligned gas

Lagos et al (in prep): can reproduce misalignments with minor mergers AND cooling from hot halo gas which is misaligned w.r.t. stellar body

Star Formation Rates and Galaxy Dynamics

Star Formation Rates and Galaxy Dynamics

Gas depletion times are longer (star formation efficiency is lower) when most of the gas is in the rising part of the rotation curve.

Additional Fun Projects

- gas-phase metallicity vs stellar metallicity; another indication of the origin of the cold gas
- star formation histories of individual galaxies, deconvolved from optical spectra and correlated with gas contents
- testing analytic models for the HI H2 transition
- molecular chemistry tracing shocks, XDR, enhanced cosmic ray populations
- spatially resolved measures of star formation efficiency

Summary

- 1. There is more cold gas in early-type galaxies than most of us expected. ~ 50% have 10^7 to $10^9 M_{\odot}$ of HI and/or H₂.
- 2. The approach to the red sequence does not mean the loss of all cold gas. Or red sequence galaxies reacquire gas.
- 3. Much of the cold gas in ETGs is kinematically misaligned.
- 4. Cold gas contents and kinematics in these galaxies are sensitive probes of their evolution useful constraints on numerical simulations.
- 5. Diversity in the stellar kinematics, gas contents, & gas kinematics of early-type galaxies emphasizes diversity in their evolutionary paths.