

Mapping Star Formation Histories of Early-Type Galaxies with Atlas₃D

Richard McDermid

Macquarie University / Australian Astronomical Observatory

+ Atlas3D Team

The Team

Pls: Michele Cappellari, Eric Emsellem, Davor Krajnović, Richard McDermid

Cols :

Katey Alatalo, Estelle Bayet, Leo Blitz, Maxime Bois, Frederic Bournaud, Martin Bureau, Alison Crocker, Roger Davies, Tim Davis, Tim de Zeeuw, Pierre-Alain Duc, Sadegh Khochfar, Harald Kuntschner, Pierre-Yves Lablanche, Raffaella Morganti, Thorsten Naab,Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Lisa Young, Anne-Marie Weijmans

Associates: Jesus Falcon-Barroso, Gijs Verdoes-Kleijn, Marie Martig, Remco van den Bosch, Glenn van de Ven

Hierarchical Growth

Atlas₃D Project

Selection:

M_K < -21.5 D < 42 Mpc |δ - 29| < 35° |b| > 15° Early-type Morphology

260 galaxies
<u>Volume-limited</u>
<u>Complete</u> in M_K

- No colour cut
- Mass range: ~ 7×10⁹ 5×10¹¹ M_{sun}

Multi- λ Approach

- **SAURON** Large Program on WHT
- Single-dish CO survey of full sample (IRAM 30m)
- HI maps of ~150 northern galaxies with WSRT (excl. Virgo)

Lisa Young's talk

- CO interferometry of detections with CARMA
- *Photometry* multi-bands (INT, 2MASS, SDSS, deep=MegaCam)
- Archival data (2MASS, Chandra, XMM, GALEX, HST, Spitzer)

Multi-Discipline Approach

- Stellar Populations, Star Formation Histories
- Dynamical modelling, Mass-to-Light ratios (JAM)
- Gas in multiple phases
- High-res numerical simulations of idealized mergers
- High-res RE-simulations of massive galaxies with full cosmology
- Semi Analytic Modelling

Richard McDermid – IAU309, Vienna, July 7th, 2014

Mass-weighted average age and metallicity

Mean Star Formation History with Galaxy Mass

Mean Star Formation History with Galaxy Mass

Star Formation History with Environment

Star Formation History with Environment

Virgo versus Non-Virgo

Truncation of CO in Virgo

Davis et al. 2013a

Local galaxy surface density

Local galaxy surface density

Fundamental Plane -> Mass Plane

Mass-Size Plane

General Picture

Cappellari et al. 2013b

Spatially-resolved picture

Kuntschner et al. 2010

Spatially-resolved picture

Richard McDermid – IAU309, Vienna, July 7th, 2014

Conclusions

- Most massive ETGs form 90% of stars by z = 2
- Least massive ETGs form 90% of stars by z = 0.1
- Stars form quickest in denser environments
- At fixed mass:
 - Smaller galaxies are older, richer in metals and more alpha-enhanced
 - Larger galaxies form smooth sequence with spirals