Stellar orbits in cosmological galaxy simulations: the connection to formation history and line-ofsight kinematics

Bernhard Röttgers¹, Thorsten Naab¹ & Ludwig Oser² arXiv:1406.6696

² Max Planck Institut for Astrophysics, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027, USA

Summary

We analyze orbits of stars and dark matter out to three effective radii for 42 galaxies formed in cosmological zoom simulations. Box orbits always dominate at the centers and z-tubes become important at larger radii. We connect the orbital structure to the formation histories and specific features (e.g. disk, counter-rotating core, minor axis rotation) in two-dimensional kinematic maps. Globally, fast rotating galaxies with significant recent in-situ star formation are dominated by z-tubes. Slow rotators with recent mergers have significant box orbit and x-tube

components. Rotation, quantified by the λ_{R} -parameter often originates from streaming motion of stars on z-tubes but sometimes from figure rotation. The observed anti-correlation of h_3 and V_0/σ in rotating galaxies can be connected to a dissipative formation history leading to high z-tube fractions. For galaxies with recent mergers in-situ formed stars, accreted stars and dark matter particles populate similar orbits. Dark matter particles have isotropic velocity dispersions. Accreted stars are typically radially biased ($\beta \approx 0.2 - 0.4$). In-situ stars become tangentially biased (as low as $\beta \approx -1.0$) if dissipation was relevant during the late assembly of the galaxy.

Galaxy Classification (Naab et al., 2013):		
	minor mergers	major mergers
gas-rich	A	B , C
gas-poor	F	D, E
green: fast-rotator blue: slow-rotator		

table).

- Formation history and anisotropy parameter β : The anisotropy profiles of our galaxies depend on the galaxy formation history (galaxy classes A though F, see table). Accreted stars are always radially biased and in-situ formed stars always have smaller β than the accreted stars. For fast rotators with gas-rich merger histories (classes A & B), they are even strongly tangentially biased. We find dark matter particles to be always

isotropic ($\beta \approx 0$).

Z-tubes and galaxy rotation: \rightarrow Rotation–quantified with the λ_{R} parameter-is mostly due to streaming motion, some galaxies, however, show signs for figure rotation (open circles). Streaming motion primarily comes from z-tubes. The net-effect is quantified with the 'effective prograde z-tube fraction': (prograde z-tube fraction) minus (retrograde ztube fraction).

References

Bryan S. E. et al., 2012, MNRAS, 422, 1863 Carpintero D. D., Aguilar L. A., 1998, MNRAS, 298, 1 Jesseit R., Naab T., Burkert A., 2005, MNRAS, 360, 1185 Krajnović D. et al., 2013, MNRAS, 432, 1768 Naab T., Oser L., Emsellem E. et al., 2013, ArXiv e-prints van den Bosch R. C. E. et al., 2008, MNRAS, 385, 647