

Dissecting the 3D structure of galaxies with gravitational lensing and stellar dynamics

Matteo Barnabè

Dark Cosmology Center & Niels Bohr International Academy Copenhagen University

In collaboration with: *Oliver Czoske (IfA Vienna), Chiara Spiniello (MPA Garching),* Léon Koopmans (Kapteyn), Scott Trager (Kapteyn), Tommaso Treu (UCSB), Aaron Dutton (MPIA Heidelberg), Matt Auger (IoA, Cambridge), Brendon Brewer (Auckland)

"Galaxies in 3D across the Universe", Vienna, 07 July 2014

Probing Galaxy Formation and Evolution

SIMULATIONS

Illustris Collaboration (Vogelsberger et al. 2014) formation of a massive ETG: log M_{*}=11.8

Combining Lensing & Dynamics:

GRAVITATIONAL LENSING

Accurate determination of total mass inside Einstein radius (projected along R_{Ein} cylinder)

STELLAR DYNAMICS

Information on 3D mass profile within the region probed by kinematic observations

Sloan Lens ACS Survey (SLACS)

- Spectroscopic lens-selected survey: candidates selected from SDSS database
- HST follow-up to confirm candidates
- ~100 lens galaxies at z = 0.08 0.51
- High-res multi-band imaging with HST
- follow-up spectroscopic observations:
 - 16 systems: VLT VIMOS IFU (Barnabè et al 2011, Czoske et al. 2012)
 - 1 system: Keck long-slit spectra (MB+ 2012)

13 systems: X-Shooter spectra (in progress)

CAULDRON: COMBINED LENSING AND DYNAMICS ANALYSIS

Lensed Image Reconstruction

- **Pixelated source reconstruction method** (cf. Warren & Dye 2003, Koopmans 2005)
- Includes regularization, PSF blurring, oversampling
- Expressed formally as a linear inversion problem: L s = d

Mass Model

Dark matter halo: axisymmetric generalized NFW density profile:

$$\rho_{\rm DM}(m) = \frac{\delta_c \,\rho_{\rm crit}}{(m/r_{\rm s})^{\gamma} \,(1 + m/r_{\rm s})^{3-\gamma}}$$
$$m^2 \equiv R^2 + \frac{z^2}{q_{\rm h}^2} \qquad \delta_c = \frac{200}{3} \frac{c^3}{\zeta(c,\gamma,1)}$$

- Free parameters [#1-4]: inner slope γ, three-dimensional axial ratio q_h, concentration c₋₂, virial velocity v_{vir}
- □ Luminous mass distribution: *multi-Gaussian expansion* (MGE) technique (Emsellem et al. 1999, Cappellari 2002) to SB profile.
 - Luminous mass distribution is <u>self-gravitating</u>, *not just a tracer*
 - Free parameter [#5]: baryonic mass M_{bar}

Dynamical Model

- □ Anisotropic Jeans equations (Cappellari 2008)
 - Free parameter [#6]: meridional plane orbital anisotropy ratio b

XLENS: SLACS ellipticals + X-Shooter

X-Shooter Lens Survey (XLENS)

- Ongoing study of 13 massive ETGs probing redshift range z ~ 0.10 to 0.45
- SLACS early-type lenses: HST multi-band imaging of the lens structure
- High signal-to-noise X-Shooter spectroscopic observations: stellar kinematics and spectroscopic SSP analysis of optical line-strength indices (see Spiniello et al. 2011, 2012)

XLENS: SLACS ellipticals + X-Shooter

X-Shooter Lens Survey (XLENS)

- We can investigate the 3D mass structure of individual massive ETGs.
- We infer stellar masses from two independent methods:
 - joint self-consistent lensing + dynamics analysis
 - spectroscopic SSP study
- Inferences on the properties of the stellar initial mass function (IMF): slope and low-mass cut-off.

Combined analysis of lens ETG J0912

J0912: massive ETG (velocity dispersion $\sigma \sim 330$ km/s) at z = 0.164

Kinematic data-set obtained with VLT X-Shooter, extends to ~ 1 R_{eff}

DM fraction (within 1 R_{eff}) ~ 0.20±0.08

J0912: dark matter fraction profile

- We can investigate the radial f_{DM} profile within the galaxy inner regions (~ 1 R_{eff})
- inner regions dominated by baryonic matter $f_{
 m DM}(r \leq Re) = 0.20^{+0.08}_{-0.09}$

dark matter fraction for the XLENS sample

- Preliminary result based on 7 analyzed galaxies
- dark matter contribution within r = Re
- f_{DM} about 10 40% except for most massive galaxy
- J0935 (most massive galaxy) has f_{DM}(r<Re) ~ 55%
- IMF: Salpeter or slightly steeper

Comparing two independent methods *lensing+dynamics and SSP analysis*

- The stellar masses inferred from the spectroscopic single stellar population (SSP) analysis of optical line-strength indices is fully consistent with the *independent* inferences from the combined lensing and dynamics study (which makes no assumptions on the IMF)
- IMF slope derived from spectroscopic SSP analysis: x = 2.60 ± 0.30

IMF inferences: Salpeter is favored

- Salpeter IMF (x = 2.35) is favored over a Chabrier IMF, which is ruled out with 99% probability (Bayes factor B = 67)
- Salpeter is perfectly consistent with the inferences from L+D
- In agreement with the results of state-of-the-art stellar population synthesis analysis (e.g. Conroy & van Dokkum 2012)

IMF inferences: super-Salpeter IMF ruled out

- IMFs significantly steeper than Salpeter ("bottom-heavy", $x \ge 3.0$) are ruled out with decisive evidence for this system: Bayes factor B > 1000
- Super-Salpeter IMFs with $x \approx 3.0 3.5$ have been suggested (see e.g. Ferreras et al. 2013) for massive ellipticals

IMF inferences: constraints on M_{low}

- We can constrain for the first time the low-mass cut-off M_{low} for the IMF
- M_{low} is crucial when determining the stellar mass-to-light ratio from stellar population evolutionary codes
- M_{low} = 0.08 M_{sun} (corresponding to the hydrogen burning limit) is ruled out with decisive evidence (99.7% probability) wrt the standard DSEPadopted value M_{low} = 0.115 M_{sun} (for *MAP* slope x = 2.60)

joint inference on IMF slope and M_{low}

- We combine the results of the L+D and SSP analyses of two galaxies (J0912 and J0936) to derive the joint inference on slope and low-mass limit
- IMF slope: x = 2.21 ± 0.14 (consistent with Salpeter)
- Low-mass cut-off: M_{low} = 0.12 ± 0.03 M_{sun}

Typical values of M_{low}/M_{sun} *used in stellar pop. evolutionary codes:* 0.08 (Conroy & van Dokkum 2012); 0.10 (Bruzual & Charlot 2003, Vazdekis et al. 2012); 0.115 (DSEP, Chaboyer et al. 2001); 0.15 (models based on Padova 2000 isochrones)

a faraway massive lens ETG...

- A massive lens elliptical at
 z = 0.62 (lookback time ~ 6 Gyr)
- HST image + VLT-VIMOS integral-field spectroscopy (30 OBs)
- The most distant system known to date for which a combined in-depth lensing + dynamics analysis has ever been attempted
- preliminary σ ~ 265 km/s
- more coming soon...

in collaboration with Claudio Grillo, Oliver Czoske, Chiara Spiniello and Lise Christensen

Conclusions

- The combination of gravitational lensing with high-res spatially resolved kinematics allows us to investigate the dark and luminous structure of massive ellipticals beyond the local Universe (z > 0.1)
- dark matter fraction around 10-40% within 1 R_{eff}, except for most massive ellipticals (f_{DM} already \geq 50% within effective radius)
- Independent methods (combined lensing + dynamics; spectroscopic SSP analysis) give fully consistent inferences on the stellar masses
- Inferred best-fit IMF slopes from SSP modeling: x = 2.10 ± 0.15 for J0936 (σ = 250 km/s) and x = 2.60 ± 0.30 for J0912 (σ = 330 km/s)
- Results on the IMF of the two studied systems:
 - Salpeter IMF is favored
 - Chabrier IMF ruled out with prob > 95%
 - Super-Salpeter IMFs ruled out with decisive evidence
- First constraints on low-mass limit for the IMF