KMOS @ the VLT: Commissioning and Early Science

Ray Sharples

Centre for Advanced Instrumentation Durham University and the KMOS Team

GALAXIES IN 3D ACROSS THE UNIVERSE 7-11th July 2014, Vienna, Austria

Acknowledgements

Ralf Bender, Alex Agudo Berbel, Richard Bennett, Naidu Bezawada, Roberto Castillo, Michele Cirasuolo, Paul Clark, George Davidson, Richard Davies, Roger Davies, Marc Dubbeldam, Alasdair Fairley, Gert Finger, Natascha Förster Schreiber, Reinhard Genzel, Reinhold Haefner, Achim Hess, Ives Jung, Ian Lewis, David Montgomery, John Murray, Bernard Muschielok, Jeff Pirard, Suzanne Ramsey, Phil Rees, Josef Richter, David Robertson, Ian Robson, Stephen Rolt, Roberto Saglia, Ivo Saviane, Joerg Schlichter, Linda Schmidtobreik, Alex Segovia, Alain Smette, Matthias Tecza, Stephen Todd, Michael Wegner, Erich Wiezorrek

Durham UK ATC Oxford MPE USM ESO

Talk Outline

- Technical Description
- On-Sky Performance
- Recent Modifications
- Early SV/GTO Science

See also papers by Natascha Foerster Schreiber, David Sobral, John Stott, David Wilman, Stijn Wuyts and Eva Wuyts later this week.

Functional Requirements

Requirement	Value				
Instrument Throughput	YJ>20%, H>30%, K>30%				
Wavelength coverage	0.85 to 2.5 μm				
Spectral Resolution <	R>3300,3400,3800,3800 (IZ,YJ,H,K)				
Number of IFUs	24				
Extent of each IFU	2.8 x 2.8 sq. arc seconds				
Spatial Sampling	0.2 arc seconds				
Patrol field	7.2'diameter field				
Close packing of IFUs	≥3 within 1 sq arcmin				
Closest approach of IFUs	≥2 pairs separated by 6 arcsec				

Optical Layout (8 arms)

Pickoff Module: 24 arms

Performance @ UT1 (Antu)

First light 21 Nov 2012

Pickoff Arm Accuracy

Total System Throughput

Red dotted lines show the minimum requirements from the Tech Spec scaled by 90% for the detector, 85% for the telescope, and 95% for the atmosphere. Segment#3 has worst performance. IZ & HK on 'best efforts' basis.

Spectral Resolution

- Resolution is close to two pixels FWHM over all spatial channels.
- Graphs show the measurements in four quartiles of H-band.
- Segment #3 seems slightly better than Segment #1

Spatial Resolution

Rot. Angle:	-141	-99	-57	-15	25	157	109	60
<fwhm_y></fwhm_y>	0".57	0".50	0".43	0".50	0".56	0".44	0".51	0".49
<fwhm_z></fwhm_z>	0".60	0".55	0".52	0".55	0".60	0".50	0".59	0".55

- In good seeing and S/N the PSFs in reconstructed cubes are well-behaved.
- FWHM along (Z) the slice (red) is slightly broader (+0".05) due to the additional aberrations in spectrograph (consistent with FWHM~0.2 pixel instrumental PSF)
- Worse in IFU#17-24 at some Nasmyth PAs (still investigating)

Background Noise Limit

Photon-noise limited exposure times (DIT) of 300 sec. Threshold Limited Integration at 50,000 counts.

Instrument Flexure

Arcs/Flats taken every 60 degrees

Detector Persistence

Cold Head Vibrations

10⁰

10

10

SD Tip-Tilt (arcseclab²/Hz)

Frequency [Hz]

M1-M3 accelerometer test - OK

UT1 Coude test (IRIS) – deemed unacceptable

 10^{2}

Frequency (Hz)

Tilt CCC OFF

Tilt CCC ON

KMOS operations since Comm-1 have required closed cycle coolers to be switched off during all VLTI runs. Adverse impact on arm reliability.

Cold Head Vibrations

Anti-vibration mounts fitted Feb 2014.

No significant impact on tip-tilt of UT1 coude train mirrors, as measured with IRIS, following installation of AV mounts.

SV/GTO programmes

• Science Verification (21 proposals):

- KMOS confirmation of Spitzer-selected galaxy clusters at z > 1.4
- Looking for low luminosity lensed galaxies with KMOS
- Near-Infrared line strength gradients in IC4296
- Outflows from massive young stellar objects
- Exoplanet transits with KMOS
- Guaranteed Time Observations (8 projects underway):
 - KMOS^{3D}
 - KMOS Deep Survey
 - KMOS Kinematic Survey
 - Chemical Evolution of Galaxies using AGB Stars
- UT1 oversubscription: P92 (7.8), P93 (6.7)

Resolved Galaxy Kinematics

0.7<z<1.5 10⁹<M*<10¹¹

Resolved 185 galaxies out of 258 targetted

Resolved Galaxy Kinematics

Sky subtraction

Russell Smith et al.

Transit Spectroscopy (?)

KMOS Mosaic Mode

Jupiter methane bands

Bry

broad He II

16 pointings 384 IFUs 75,000 spectra

R136 (30 Dor) *R Davies et al* A&A <u>558</u>, 56 (2013)

Br-γ outflows

Hell Wolf-Rayet stars

Science Papers

- KMOS science papers now starting to hit the press:
 - Davies et al 2013, A&A 558, 56
 - Sobral et al 2013, ApJ 779, 139
 - Wuyts et al 2014, arXiv1405.6590
 - Genzel et al 2014, arXiv1406.0183
 - Stott et al 2014, arXiv1407.1047

Summary

- KMOS is a new multi-object nearinfrared integral field spectrograph now available at the ESO VLT.
- Performance has been verified through and extensive series of technical and scientific tests at Paranal.
- KMOS is already beginning to make its mark in 3D spectroscopic surveys of a wide variety of different science areas.

Thank You

