

The Evolution of Resolved Kinematics and Metallicity from z=2.7 to 0.7 with LUCI, SINS and KMOS^{3D}

Eva Wuyts

N.M. Förster Schreiber, R. Genzel, L.J. Tacconi, S. Wuyts, D. Wilman,

K. Bandara, A. Beifiori, R. Bender, G. Brammer, J. Chan, R. Davies, M. Fabricius, M. Fossati, S. Kulkarni, J. Kurk, P. Lang, D. Lutz, J.T. Mendel, I. Momcheva, E. Nelson, D. Rosario, R. Saglia, S. Seitz, R. Sharples, P. van Dokkum, E. Wisnioski, et al.

Vienna, July 10

IAU309: Galaxies in 3D across the Universe

SUMMARY

Redshift Evolution of Velocity Dispersion

- ✤ overall decrease from z~4 to the present day
- In the evolution of gas fractions in near-critical disks

Wisnioski et al. 2014, to be submitted soon

Tracing Metallicity with the [NII]/Ha ratio

- consistent study over large redshift range 0.7 < z < 2.7
- MZR shows a constant slope at the low mass end -> redshift evolution fully described
- by the evolution of the characteristic turnover mass
- ✤ no correlation between [NII]/Ha and SFR at fixed mass and redshift

Wuyts et al. 2014, ApJ, 789L, 40

THE KMOS^{3D} SAMPLE

vobs=136 km/s

Wisnioski et al. (in prep), also see Kassin et al. 2012, 2014

Toomre stability criterium

$$\frac{v_{\rm rot}}{\sigma_0} = \frac{a}{f_{\rm gas}(z)Q_{\rm crit}}$$

Genzel et al. 2008

$$f_{\text{gas}} = \frac{1}{1 + (t_{\text{dep}} \text{sSFR})^{-1}},$$

Tacconi et al. 2013

SUMMARY

Redshift Evolution of Velocity Dispersion

- ✤ overall decrease from z~4 to the present day
- In the evolution of gas fractions in near-critical disks

Wisnioski et al. 2014, to be submitted soon

Tracing Metallicity with the [NII]/Ha ratio

- consistent study over large redshift range 0.7 < z < 2.7</p>
- MZR shows a constant slope at the low mass end -> redshift evolution fully described
- by the evolution of the characteristic turnover mass
- ✤ no correlation between [NII]/Ha and SFR at fixed mass and redshift

Wuyts et al. 2014, ApJ, 789L, 40

THE COMBINED SINS + LUCI + KMOS^{3D} SAMPLE

222 SFGs @ z=0.9-2.3

SINS/zC-SINF

12 SFGs @ z=1.5 14 SFGs @ z=1.5 62 SFGs @ z=0.9

LUCI 49 SFGs @ z=2.3 38 SFGs @ z=2.3 47 SFGs @ z=2.3

KMOS^{3D}

THE MASS-METALLICITY RELATION

AGN = classic indicators X-ray, radio, IRAC colours, rest-frame UV spectra (18)

broad AGN-driven outflows Genzel+2014 (20)

-> 17% contamination

83% detection rate of [NII]

THE MASS-METALLICITY RELATION

THE MASS-METALLICITY RELATION

 $12 + \log(O/H) = Z_0 + \log\left[1 - \exp\left(-\left[\frac{M_*}{M_0}\right]^{\gamma}\right)\right]$ Zahid+2014

Best-fit Parameters								
Reference	Redshift	Z_0	$\log(M_0/M_{\odot})$	γ	$\log(M_0^{\rm fixed}/M_\odot)$			
Z13	0.08	8.69 ± 0.01	9.02 ± 0.02	0.40 ± 0.01	8.95 ± 0.05			
This work	0.9	8.8 ± 0.4	10.2 ± 0.9	0.4 ± 0.6	9.78 ± 0.11			
This work	2.3	8.7 ± 0.3	10.5 ± 0.5	0.5 ± 0.2	10.36 ± 0.06			

Best-fit Parameters								
Reference	Redshift	Z_0	$\log(M_0/M_{\odot})$	γ	$\log(M_0^{\rm fixed}/M_\odot)$			
Z13	0.08	8.69 ± 0.01	9.02 ± 0.02	0.40 ± 0.01	8.95 ± 0.05			
This work	0.9	8.8 ± 0.4	10.2 ± 0.9	0.4 ± 0.6	9.78 ± 0.11			
This work	2.3	8.7 ± 0.3	10.5 ± 0.5	0.5 ± 0.2	10.36 ± 0.06			

Best-fit Parameters									
Reference	Redshift	Z_0	$\log(M_0/M_{\odot})$	γ	$\log(M_0^{\rm fixed}/M_\odot)$				
Z13	0.08	8.69 ± 0.01	9.02 ± 0.02	0.40 ± 0.01	8.95 ± 0.05				
This work	0.9	8.8 ± 0.4	10.2 ± 0.9	0.4 ± 0.6	9.78 ± 0.11				
This work	2.3	8.7 ± 0.3	10.5 ± 0.5	0.5 ± 0.2	10.36 ± 0.06				

The redshift evolution of the MZR can be described fully in terms of the evolution of the characteristic turnover mass

 $\log(M_0/M_\odot) = (8.86 \pm 0.05) + (2.92 \pm 0.16)\log(1+z).$

CORRELATION WITH STAR FORMATION RATE

CORRELATION WITH STAR FORMATION RATE

No correlation between [NII]/Ha and SFR at fixed redshift and stellar mass

The redshift evolutions of metallicity and SFR might not be causally related

METALLICITY GRADIENTS

METALLICITY GRADIENTS

SUMMARY

Redshift Evolution of Velocity Dispersion

- ✤ overall decrease from z~4 to the present day
- In the evolution of gas fractions in near-critical disks

Wisnioski et al. 2014, to be submitted soon

Tracing Metallicity with the [NII]/Ha ratio

- consistent study over large redshift range 0.7 < z < 2.7</p>
- MZR shows a constant slope at the low mass end -> redshift evolution fully described by the evolution of the characteristic turnover mass
- no correlation between [NII]/Ha and SFR at fixed mass and redshift
- Wuyts et al. 2014, ApJ, 789L, 40

CORRELATION WITH STAR FORMATION RATE

162 galaxies, FMOS, z=1.6

Zahid et al. 2013

CORRELATION WITH STAR FORMATION RATE

162 galaxies, FMOS, z=1.6

SFR_{Ha}

Zahid et al. 2013