Resolved spectroscopy of gravitationally lensed galaxies at $z \approx 2$

Tucker Jones
(UCSB/Center for Galaxy Evolution)

In collaboration with the GLASS team (Tommaso Treu, Kasper Schmidt, Xin Wang, et al), Richard Ellis, Dan Stark, Johan Richard, Eric Jullo, Mark Swinbank, Nicha Leethochawalit

Galaxies in 3D across the universe, 10 July 2014
Gravitational lensing provides a huge advantage for high z galaxy studies!

Gravitational lensing magnifies angular size and flux

- Typical linear magnification ~10x
 → 10x more resolution elements than non-lensed case
 → resolution ~100 pc (c.f. >1000 pc)
- Flux magnification up to 4 magnitudes
 → can study galaxies with ~50x fainter intrinsic luminosity
• Kinematics: rotating with high velocity dispersion
 – A minority are major mergers
• Gravitationally unstable
 – Toomre parameter $Q = \frac{\sigma_k}{\pi G \Sigma} \approx 0.5-1$
• Clumpy star formation driven by gravitational instability
 – Clump sizes, masses agree with expected fragmentation scale
 See talks by Genzel, Förster Schreiber, etc.
 Lensing data show very similar results for more compact, lower mass galaxies.
• Metallicity: $\sim 0.1-1x$ solar with negative radial gradients
 – Steeper gradients than in local disk galaxies
 – Indicates no recent major mergers, and consistent with current cosmological simulations with “normal” feedback (e.g. Gibson+2013; Angles-Alcazar+2014)

TJ+2010a,b, 2013; Livermore, TJ+2012; Leethochawalit, TJ+ in prep
Why measure metallicity gradients?

Local disk galaxies have negative radial gas-phase metallicity gradients
 – Explained by inside-out disk growth

Various models + simulations predict a range of evolutionary behavior for the metallicity gradient slope
 – Gradients may be steeper, flatter, or even inverted at earlier times
 – Time evolution is sensitive to kinematics, feedback, accretion history, etc.
 – Mergers, interactions cause gradients to flatten on short time scales

Time evolution of metallicity gradients constrains galaxy assembly history and directly tests models of galaxy formation.
High angular resolution is essential for high-z gradient measurements.

Yuan, Kewley, & Rich 2013

![Graph showing observed gradient vs. FWHM for AO, Non-AO, and Lensed+AO cases.](image-url)
Ground: Keck/OSIRIS IFU + AO
Advantages: kinematic data, large aperture, sensitivity improved by recent upgrades to grating and AO system

Space: GLASS (HST grism survey of 10 strong lensing galaxy clusters)
Advantages: multiplexing, wavelength range, excellent Strehl, no atmosphere

PI: Tommaso Treu
glass.physics.ucsb.edu
Schmidt+ 2014
Methods: Keck/OSIRIS+AO data

Step 1: take data

Step 2: confirm that emission is from H II regions (vs. AGN, shocks)

Step 3: use line ratios to infer the metallicity. Check that multiple diagnostics agree.

Step 4: profit!
GLASS HST grism survey

Dec. R.A.

 flux

$\lambda / [\mu m]$
System of 3 interacting galaxies at $z=1.855$
Gradient evolution: data vs simulations

Gibson et al 2013; Angles-Alcazar et al 2014; Torrey et al simulations: stronger feedback removes metals from small radii and re-deposits them at larger radii, resulting in weaker gradients.

→ Current lensing data compatible with “standard” feedback/outflow models.
→ Merging / interacting galaxies have flatter gradients.
Outflow properties from UV absorption lines

Measure feedback properties, stellar metallicity, ISM metallicity, abundance ratios from optical echelle spectra (Keck/ESI)
High quality data for >10 lensed galaxies
Combining IR and optical spectra

Nebular metallicity

Interstellar metallicity + outflow properties

Stellar metallicity

Average metallicity is \([\alpha/H] \approx -0.3\)

Remarkably good agreement in different phases

ISM abundance ratios \([\alpha/Fe] \approx +0.6\)

\(\rightarrow\) Abundances similar to bulge & thick disk of MW

\[\tau J+ 2013, Quider+ 2009, TJ+ in prep\]
Summary: $z=2$ galaxies at high resolution

Spectroscopy of star-forming galaxies at $z=2$:
100 pc resolution achieved with gravitational lensing

- 2/3 are thick disks evolving *in situ*
 - High velocity dispersion $\sigma \sim 50-100$ km/s, low $V/\sigma < 2$
 - Clumpy SF driven by gravitational instability, high gas fraction
 - Negative metallicity gradients, consistent with expectations from feedback

- 1/3 are undergoing major mergers

Lensed galaxy sample size at $z\sim 2$ is increasing dramatically thanks to OSIRIS instrument upgrades and the GLASS survey