

Françoise Combes *July 9, 2014*

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Models of AGN Feedback

Perseus cooling flow

Simulated X-rays

X-ray cavities

Cool-cores in 70-90% clusters (Edge et al 1992)

The others are mergers, un-relaxed

MS0735.6+7421 cluster (McNamara et al. 2009)

Radio jets

Gaibler et al 2012

- **1-AGN feedback moderating cooling flows**
- 2- SN+AGN inflow/outflow in galaxies
- **3- Mechanisms -- Energetics**
- 4- Modes of quenching

Two main modes for AGN feedback

Quasar mode: radiative or winds

When luminosity close to Eddington, young QSO, high z $L_{Edd} = 4\pi G M_{BH} m_p c/\sigma_T \rightarrow M_{BH} \sim f \sigma^4$, f gas fraction

Same consideration with radiation pressure on dust, with σ_d

 $\sigma_d / \sigma_T \sim 1000$, limitation of Mbulge to 1000 M_{BH}?

Radio mode, or kinetic mode, jets

When L < 0.01 L_{edd} , low z, Massive galaxies, Radio E-gal Not destructive: keeps a balance cooling-heating *Radiatively inefficient flow ADAF*

High frequency of cooling flows in clusters, Low-luminosity AGN Seyferts..

Chandra X-ray [3 Color]

Chandra X-ray [Sound Waves]

Molecular Gas Salomé et al 2006

1- Gas flow in cool core clusters

Star formation (green) Canning et al 2014

Cold gas in filaments

Inflow and outflow coexist

The molecular gas coming from previous cooling is dragged out by the AGN feedback

The bubbles create inhomogeneities and further cooling

The cooled gas fuels the AGN

Numerical simulations (Revaz, Combes, Salome 2007)

Buoyant bubbles, compression and cooling at the surfaces +Cold gas dragged upwards

Large variety of simulations

Brueggen et al 2007, Cattaneo & Teyssier 2007, Dubois et al 2010, Gaspari et al 2011, 2012 for clusters, or massive elliptical galaxies Cooling rate ~ boosted Bondi rate, **but Cold gas accretion better** Radiation pressure insufficient

Mechanical feedback

Success in moderating^g the cooling, keeping the CC structure

Efficiency scaled to the structure scale *Gaspari et al 2012* 3e-4 (E-gal) 5e-3 (clus)

Comparison between models

During a merger, accreted gas fuels SFR and BHAR BHAR delay, since SN-feedback too strong at the beginning (Wild et al 2010)

2- Molecular outflows

Mrk 231

AGN and also nuclear Starburst, 10^7 - 10^8 Mo Outflow 700Mo/yr

IRAM Ferruglio et al 2010

20 J1148

CII

000

 $dM/dt = 3v M_{OF}/R_{OF} \sim 1000 Mo/yr$, (5xSFR) Kinetic power ~2 10^{44} erg/s \rightarrow AGN

High density, HCN, HCO+, Aalto et al 2012

Relations outflows with AGN

For AGN-hosts, the outflow rate Correlates with the AGN power

Cicone et al 2014

dM/dt v ~20 L_{AGN}/c Can be explained by energy-driven outflows (Zubovas & King 2012)₁₁

3-Why molecular outflows?

Outflowing gas is accelerated by a shock, and heated to 10⁶-10⁷K

Molecules should be dissociated at such temperatures Even if cold clumps are carried out in the flow \rightarrow shock signature?

Radiative cooling is quick enough to reform molecules in a large fraction of the outflowing material (Zubovas & King 2014)

With V~1000km/s, and dM/dt ~1000 Mo/yr, efficient cooling produces multi-phase media, with triggered star formation

AGN winds more than SF outflows?

Zubovas & King 2014

Cooling efficient (free-free, metals) Flow unstable, if R=Prad/Pgas<0.5 (Krolik 1981), and $R\sim0.07 M_{BH}/M_{crit} f_{EDD} \sim 0.07$ \rightarrow Multiphase, with RT instabilities

Time-scale for cooling << 1Myr At kpc scales, →SF induced

The SF results in a Luminosity Comparable to L_{AGN} 100Mo/yr!

This means that SB or AGN outflows are difficult to disentangle All could be due to AGN¹³

Energy-conserving outflows?

If the cooling is very efficient, \rightarrow momentum-conserving outflow

But for very fast winds > 10 000km/s, radiative losses are slow → energy-conserving flow (Faucher-Giguère & Quataert 2012)

In some cases, even slow winds v_{in} ~1000km/s driven by radiation pressure on dust, could be energy-conserving Push by the hot post-shock gas, boost the momentum Vs of the swept-up material

Boost of v_{in} /2 Vs ~50! Explains why momentum flux >> L_{AGN}/c

// Adiabatic phase, or Sedov-Taylor phase in SN remnant

Slow cooling --High momentum fluxes

Outflow solutions

Momentum boost

$$\dot{M}_{\rm s}v_{\rm s}^2 \approx \frac{1}{2}\dot{M}_{\rm in}v_{\rm in}^2,$$

Represent the typical case of Mrk231, face-on, R~3kpc V~1000km/s

```
Momentum flux =15 L_{AGN}/c
```

Faucher-Giguère & Quataert 2012

Winds launch

From accretion disks, as seen in UV abs lines BAL quasars, or from X-rays coronae Thermal heating (Compton) makes the gas reach Vesc Radiation on electrons (> Eddington) Or even radiation pressure on dust

Or magnetic driving (*Proga 2003, 2005*) More realistically, all driving mechanisms together!

Tombesi 10, 14

Quasar mode: Two-phase simulations

Could lead to $M-\sigma$ relation

Nayakshin 2014

Most of the outflow kinetic energy escapes through the voids Positive and negative feedback Cold gas is pushed by ram-pressure More feedback on low-density gas

Radio mode: Fractal structure 2pc-1kpc

Efficient relativistic jets; Influence of the porosity *Wagner & Bicknell 2011*

Positive AGN feedback Radio jets triggered SF

Silk 2005, Dubois et al 2013

Young, restarted radio loud AGN 4C12.50 The outflow is located 100 pc from the nucleus where the radio jet interacts with the ISM *Morganti et al 2013, Dasyra & Combes 2012*

Feedback in low-luminosity AGN

NGC 1433: barred spiral, **CO(3-2) with ALMA** Molecular gas fueling the AGN, + outflow // the minor axis

M_{H2} = 5.2 10⁷ M_o in FOV=18"

100km/s flow 7% of the mass= 3.6 10⁶ Mo Smallest flow detected

→ L_{kin} =0.5 dM/dt v² ~2.3 10⁴⁰ erg/s L_{bol} (AGN)= 1.3 10⁴³ erg/s Flow momentum > 10 L_{AGN} /c

Combes et al 2013

4- Modes of Quenching

Rapid: Feedback from SF, from AGN
Slow: Morphological quenching, after bulge formation

Feedback loop?

Torque limited growth

Mostly gas accretion, sometimes Mergers (but not essential)

Numerical evolution $M-\sigma$ relations for seeds

Effects of initial conditions are Quickly erased

dM_{BH}/dt ~SFR with scatter No feedback loop required

Angles-Alcazar et al 2013

AGN feedback in mergers

SFR ~ρⁿ with n=1, 1.5, 2 SN feedback+ BH growth and associated feedback

Sub-grid physics How much feedback?

thermal model

Springel et al. (2003-2005), Hopkins et al. 2006

Gabor & Bournaud 2014: No quenching effect 24

Several modes simulated

Quasar mode, when $dM_{BH}/dt > 0.01$ Edd – Energy released spherically **Radio-jets** otherwise: V= 10⁴km/s, in a cylinder perp. to the disk

Efficiency to form stars reduced by a factor 7 Decrease the baryon concentration *Dubois et al 2012, 2013*

Costa et al 2014

Energy-driven, much more efficient then momentum-driven AGN outflows with > 10 Ledd/c

Entrained cold gas > 10⁹ Mo If after-shock cooling with metals

SUMMARY: AGN feedback

→ AGN feedback is very efficient in **Cool Core clusters** to moderate the cooling: mechanical with radio jets, cold gas accretion

→ Molecular outflows are now observed frequently, around AGN, v=200-1200km/s 10^7-10^9 Mo, load factors >3

➔ Mechanisms: Quasar modes (winds), Radio modes (jets), for more massive galaxies with lower Edd ratios (and lower z) Either mass accretion or mergers

 \rightarrow Energy-conserving flow: Momentum boost 20 L_{AGN}/c