

disappearing AGN torus

The search for a

Leonard Burtscher, Richard I. Davies, Ming-yi Lin, Gilles Orban de Xivry, David Rosario, Allan Schnorr-Müller

AGN luminosity

IAU Symposium 309, July 2014, Vienna

disappearing AGN torus

The search for a

Leonard Burtscher, Richard I. Davies, Ming-yi Lin, Gilles Orban de Xivry, David Rosario, Allan Schnorr-Müller

AGN luminosity

IAU Symposium 309, July 2014, Vienna

What causes AGN activity?

What causes AGN activity?

Variability on "short" timescales

The AGN ,,torus" as resolved on sub-pc scale with VLTI

NGC 1068

Lopez, Jaffe, Burtscher+ 2014

3 component model of the dust emission in the Circinus galaxy

Tristram, Burtscher+ 2013

AGN Torus disappearance

Disk wind scenario

- Mass outflow ~ $L^{1/2}$; L ~ \dot{M}_{in} $\rightarrow \dot{M}_{out}/\dot{M}_{in} \sim L^{-1/2}$
- since M
 _{out} must be < M
 {in}, torus disappears at L{bol} ~ 10⁴² erg/s (Elitzur & Shlosman 2006)

AGN Torus disappearance

(e.g. Gallagher+ 2013)

Starburst-driven inflow (e.g. Schartmann+ 2008)

Disk wind scenario

- Mass outflow ~ $L^{1/2}$; L ~ \dot{M}_{in} $\rightarrow \dot{M}_{out}/\dot{M}_{in} \sim L^{-1/2}$
- since M
 _{out} must be < M
 {in}, torus disappears at L{bol} ~ 10⁴² erg/s (Elitzur & Shlosman 2006)

Stationary accretion model

- volume filling factor $\Phi \sim \dot{M}_{torus}^{-1/2} \sim L^{-1/2}$ $\rightarrow \Phi \sim L^{-1/2}$ (Beckert & Duschl 2004)
- clumpy torus: $\Phi \ll I \rightarrow$ lower limit for existence of obscuring torus at $L_{bol} \sim 10^{42}$ erg/s (Hönig & Beckert 2007)

The mid-IR-X-ray relation

The mid-IR-X-ray relation

Probing the non-stellar continuum with SINFONI

Probing the non-stellar continuum with SINFONI

CO Equivalent Width (Angstroms)

NGC 2911 (LINER)

no dilution, but two stellar populations

box: 3" (1 kpc)

15.0

7.5

6.0

4.5

3.0

1.5

Equivalent Width (r) 15 r < 200 pc r > 200 pc CO K1 EW [Angstrom] 10 5 0 0.0 0.5 1.0 1.5 Radius [arcsec]

Ldilute VS. LX

Ldilute VS. LX

- BAT AGNs
- 2-10 keV /
 L_{dilute} limits

Stellar Iuminosity

Stellar Iuminosity

A near-IR – mid-IR correlation

45

- Tight correlation
 between near-IR nonstellar light and mid-IR
- no type I/2 dichotomy (see also Lutz+,Gandhi +,Horst+,Asmus+,...)
- but: perhaps some interesting outliers

Conclusions + Outlook

- The bimodality in the dilution of starlight by the AGN is caused by a nearly constant stellar surface brightness and a wide range of AGN luminosities
- We establish a new correlation between non-stellar continuum in the K band and X-ray luminosity. Outliers have peculiar X-ray properties.
- We also find a good correlation between the nuclear non-stellar near-IR light and the nuclear mid-infrared light. Some of the few outliers are known to be devoid of hot dust.

Backup slides

Powerful AGN sample

ongoing SINFONI + XSHOOTER observations

Nuclear Starburst in NGC1068

Star forming Region Size & Mass

fit intensity & dispersion simultaneously with bulge + 'disk'

- for each component, fit: R_{eff} , n, I_0 , σ • bulge component $R_{eff} \& n$ similar to NICMOS profile • nuclear 'disk' component $R_{eff} = 0.51'' = 36pc$ n = 1.6 $\sigma =$ 35-55 km/s
- $M_{dyn} = 5-9 \times 10^7 M_{sun}$
- $M_{BH} \simeq 1 \times 10^7 M_{sun}$ (Greenhill+ 96)
- $\Sigma_{dyn} \simeq 2 \times 10^4 M_{sun}/pc^2$
- $M_{dyn}/L_{K} \sim 4$ agrees with starburst age 200-300Myr (Davies+ 07)
- $M_{BH}/M_{stars} \simeq 0.15$

Nuclear Starburst in NGC1097

Star forming Region Size & Mass

fit intensity & dispersion simultaneously with bulge + 'disk'

